Dixit, G. P., Parihar, A. K., Bohra, A. & Singh, N. P. Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. The Crop Journal 4, 407–416 (2016).
Kislev, M. E. Origins of the cultivation of Lathyrus sativus and L. cicera (Fabaceae). Economic Botany 43, 262–270 (1989).
Coward, F., Shennan, S., Colledge, S., Conolly, J. & Collard, M. The spread of Neolithic plant economies from the Near East to northwest Europe: a phylogenetic analysis. Journal of Archaeological Science 35, 42–56 (2008).
Lambein, F., Travella, S., Kuo, Y.-H., Van Montagu, M. & Heijde, M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? Planta https://doi.org/10.1007/s00425-018-03084-0 (2019).
Campbell, C. G. Grass Pea: Lathyrus Sativus L. Promoting the conservation and use of underutilized and neglected crops vol. 18 (International Plant Genetic Resources Institute, 1997).
Rajarammohan, S. et al. Genome sequencing and assembly of Lathyrus sativus – a nutrient-rich hardy legume crop. Sci Data 10, 32 (2023).
Edwards, A. et al. Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus. Nat Commun 14, 876 (2023).
Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 10, 1 (2019).
Macas, J., Koblízková, A. & Neumann, P. Characterization of Stowaway MITEs in pea (Pisum sativum L.) and identification of their potential master elements. Genome 48, 831–839 (2005).
Macas, J., Neumann, P. & Pozárková, D. Zaba: a novel miniature transposable element present in genomes of legume plants. Mol Genet Genomics 269, 624–631 (2003).
Yang, T. et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet 54, 1553–1563 (2022).
Sanches, M. et al. Grass pea (Lathyrus sativus) interesting panoply of mechanisms to cope with contrasting water stress conditions – a controlled study of sub populational differences in a worldwide collection of accessions. Agricultural Water Management 292, 108664 (2024).
Jones, A. et al. High-molecular weight DNA extraction, clean-up and size selection for long-read sequencing. PLOS ONE 16, e0253830 (2021).
Schalamun, M. et al. Harnessing the MinION: An example of how to establish long-read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora. Molecular Ecology Resources 19, 77–89 (2019).
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18, 170–175 (2021).
Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. Preprint at https://doi.org/10.12688/f1000research.12232.1 (2017).
Laetsch, D. R., Koutsovoulos, G., Booth, T., Stajich, J. & Kumar, S. DRL/blobtools: BlobTools v1.0.1. Zenodo https://doi.org/10.5281/zenodo.845347 (2017).
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio] (2013).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Systems 3, 95–98 (2016).
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).
Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Systems 3, 99–101 (2016).
Vondrak, T. et al. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. The Plant Journal 101, 484–500 (2020).
Aliyeva-Schnorr, L., Ma, L. & Houben, A. A Fast Air-dry Dropping Chromosome Preparation Method Suitable for FISH in Plants. J Vis Exp e53470 https://doi.org/10.3791/53470 (2015).
Macas, J. et al. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE 10, e0143424 (2015).
Macas, J., Neumann, P. & Navrátilová, A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8, 427 (2007).
Macas, J. et al. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLOS Genetics 19, e1010633 (2023).
Neumann, P. et al. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species. Molecular Biology and Evolution 32, 1862–1879 (2015).
Neumann, P. et al. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes. Frontiers in Plant Science 7 (2016).
Macas, J. et al. Long read sequencing and centromere characterization of Fabeae species (2022).
Ávila Robledillo, L. et al. Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae. Molecular Biology and Evolution 37, 2341–2356 (2020).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012).
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).
Stovner, E. B. & Sætrom, P. epic2 efficiently finds diffuse domains in ChIP-seq data. Bioinformatics 35, 4392–4393 (2019).
Novak, P. kavonrtep/TideCluster: 0.0.8. Zenodo https://doi.org/10.5281/zenodo.7885626 (2023).
Gao, Y., Liu, B., Wang, Y. & Xing, Y. TideHunter: efficient and sensitive tandem repeat detection from noisy long-reads using seed-and-chain. Bioinformatics 35, i200–i207 (2019).
Novak, P. Domain based annotation of transposable elements – DANTE (2023).
Novak, P. kavonrtep/dante_ltr: 0.2.3.2. Zenodo https://doi.org/10.5281/zenodo.8183566 (2023).
Novák, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793 (2013).
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc 15, 3745–3776 (2020).
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker (2013).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Novak, P. Various bioinformatics utilities (2023).
Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).
Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics and Bioinformatics 3, lqaa108 (2021).
Santos, C., Polanco, C., Rubiales, D. & Vaz Patto, M. C. The MLO1 powdery mildew susceptibility gene in Lathyrus species: The power of high-density linkage maps in comparative mapping and synteny analysis. The Plant Genome 14, 1–15 (2021).
Santos, C., Martins, D., Rubiales, D. & Vaz Patto, M. C. Partial Resistance Against Erysiphe pisi and E. trifolii Under Different Genetic Control in Lathyrus cicera: Outcomes from a Linkage Mapping Approach. Plant Disease 104, 2875–2884 (2020).
Kreplak, J. et al. A reference genome for pea provides insight into legume genome evolution. Nature Genetics 51, 1411–1422 (2019).
BioBam Bioinformatics. OmicsBox – Bioinformatics Made Easy (2019).
Bayer, M. et al. Comparative visualization of genetic and physical maps with Strudel. Bioinformatics 27, 1307–1308 (2011).
Kuznetsov, D. et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res 51, D445–D451 (2023).
Vigouroux, M. et al. PRJEB70892 – Lathyrus sativus LS007 HiFi genome sequencing, PacBio raw data. European Nucleotide Archive https://www.ebi.ac.uk/ena/browser/view/PRJEB70892, https://identifiers.org/ena.embl:ERP155791 (2024).
Vigouroux, M. et al. PRJEB70892 – Lathyrus sativus LS007 HiFi genome sequencing, scaffolded genome assembly. NCBI https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_963859935.3/, https://identifiers.org/ncbi/insdc.gca:GCA_963859935.3 (2024).
Vigouroux, M. et al. Supporting files for research paper ‘A chromosome-scale reference genome of Lathyrus sativus’ https://doi.org/10.5281/zenodo.10671532 (2024).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Research 49, D344–D354 (2021).
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol 38, 5825–5829 (2021).
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).
Emmrich, P. M. F. et al. A draft genome of grass pea (Lathyrus sativus), a resilient diploid legume. 2020.04.24.058164 Preprint at https://doi.org/10.1101/2020.04.24.058164 (2020).